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INTRODUCTION

One of the central questions of Tchebycheff approximation is computing
the polynomial of best approximation. The underlying idea of the algorithms
of computation is usually approximation of Tchebycheff norm by other
norms.

Consider for example the P61ya algorithm. Letf E qo, II, let Pn(f)c be
the algebraic polynomial of degree n of best Tchebycheff approximation to f,
and Pn(f)q (q> I) the algebraic polynomial of degree n of best L q
approximation to f Then as was shown by P6lya [I] pn(f)q converges
uniformly to Pn(f)c as q ---+ + 00. The analogue of this theorem for the de la
Vallee-Poussin (or discrete) algorithm was proved by Motzkin and Walsh
12, 3]. Moreover Cheney 14] proved that

where pn(f)y is the best Tchebycheff approximation to f on Y c [0, II, wJc5)
is the modulus of continuity of f and IYI = SUPXE[O.l\ infyEy Ix - yl. Some
theorems on uniform convergence of de la Vallee-Poussin algorithm for
classes of continuous functions were proved in [5].

In the present paper we shall investigate the rate of convergence of P6lya
algorithm. As it was shown by Peetre 16 j, if f E qo, 1] is continuously
differentiable then for q >qo

Our aim is to prove a theorem on convergence of P61ya algorithm for
arbitrary f E qo, 1]. Moreover we shall verify the sharpness of our
estimations. At last we give a theorem on uniform convergence of P61ya
algorithm.
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In what follows C i(···) and q i(' .. ) denote positive constants depending
only on quantities specified in the brackets; while C i and qj denote positive
absolute constants.

MAIN THEOREMS

Letf E qo, II. We shall use the following notation

Ilfllc = max If(x)l;
XE[O,1 J

Ilfll q = u: If(x)jq dX) Iq (q;) I);

w/O) = sup If(x l ) - f(x 2 )1;
X!,X,E[O, 1J

IXI--X21 <,0

Pn(f)c and Pn(f)q are algebraic polynomials of order at most n of best
approximation in C and L q norm respectively (n E £ ), Further define
E 1 = E 1(q) as the unique solution of the equation

I 'I-= w),e q't)
E[

(E J > 0; q;) I), (1)

It can be easily verified that E 1(q) monotonously tends to infinity as
q -t + 00 and q/EJ(q) > C In q for q;) qo'

THEOREM J. Let f E qo, II. Then for any q;) I and n E J1 + '

(2)

Let us consider some concrete cases. If W),6) ~ 6n (0 < a ~ I; °< 6 ~ I),
then E 1(q);) aq/ln q (q;) en), If wJ6) ~ exp[-a Inb(ljJ) I (0 < b < 1, a > 0),
then EJ(q);) al/bq/lnl/bq (q;) en). For w/6) ~ 1/lna(J/6) (a> 0) we have
EJ(q);)qa!la+Il (q~ I). .

It turned out that estimation (2) is in general the best possible. We shall
need some additional definitions. Let W be the set of all moduli of continuity
of continuous functions, WI' w 2 E Ware said to be equivalent, written
WI ~ w 2 iff C 1w 1(6) ~ w 2(6) ~ C2 w 1(6) (0 < 6 ~ I).

THEOREM 2. Let n E £ t. Then for any W E W there exists a function
f E qo, II such that wf~ wand

(3 )

where E I (q) is the unique solution of ( I ).
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By this theorem estimation (2) is sharp in general for functions with
arbitrary moduli of continuity. From Theorems 1 and 2 we obtain following

COROLLARY. Let fEC[O,II, Wf{6)~6" (O<a:::;;l~ 0<6:::;;1),
n E +. Then for any q ~ e"

(4 )

and for any 0 < a :::;; 1 this order of convergence is in general the best
possible.

Finally, we give a theorem on the uniform convergence of P6lya's
algorithm for Lip a.

THEOREM 3. For any n E l' + ' f E C[O, II with wJ6):::;; 6" (0 < 6:::;; 1;
o< u:::;; 1) and q ~ q I (n, a)

(5)

where constants ql(n, a) and C 4(n, a) depend on~v on nand a.

PROOF OF THEOREM 1

Let Ea = Ea(q) be the unique solution of the equation

wJe-q/f,,)

E(/ a
(a> 0, q ~ 1), (6)

hence Et(q) defined by (1) equals to Ej(q) defined above. Then evidently for
any q ~ 1

(7)

i.e., the solutions of (1) for equivalent moduli are equivalent.

LEMMA 1. For any f E ClO, 1) such that f(s) = °for some s E [0, 1)
and' any q ~ 1

(8 )

Proof We shall consider two cases.
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Case I. 1I/IIe~wfe-q). Then if E[~ I, Ilflle~w,(e q)~wfl)IEI' On
the other hand, if E} > I, 1l/lle~wfe q)~w,(e-q/El)= liE,. Hence, in this
case,

I1I II max(I,wfl))
le~ E .

I

Case 2. lillie> wfe q). Set E*(q) = Ea(q),
E* > I. Indeed, if E* ~ I, then by (6)

I ~ E* = _1lLJls- ~ iiflle
w,(e- q/J ) w,(e- q)

(9)

where a = lillie. Then

> I.

(10)

By this contradiction we obtain, that E* > I. Further, without loss of
generality we may assume that lillie = I(s I) and s I > s. Then obviously
I(x) ~ lillie - wfsl - x) for x EO Is. sll. hence setting t = minlx : w,(x) =

lillie ~ we obtain

1I/II q ~ \r (11fl:e -- w,(s I -- x))q dx (. Lq

? '~l t

= l{ (lillie - w,(x))q dX! [N.

Set now t= max{x : w,(x) = 1I/IIeIE*~. Since E* > 1. we have 0 < t < t. This
and (10) imply

1I/II q ~ )f (lillie - w,(x»)q dx (1!q ~ (lillie _11~~e) jl/q. (II)

By definition of t and E*.
t ~ e' q;L'

Further, (7) implies that

E* ::? E I

r max(J, 1/11/11e) ,

Using this, (12) and (J I) we arrive at

1I/II q ~ lillie (I -- ;* )e-I/E' ~ lillie ( I_ ;*) 2

~ lillie - 2 ~lle ~ 11/11e- 2 lillie ma~(l, l/ll/lle)
I

~ lillie _ 2 max(l, wfl ).
E[

This inequality together with (9) completes the proof of the lemma.

(12 )
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LEMMA 2. For any f E C[O, 11 and q> I,
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max(1, wJI))
Ilf - Pn(fMc ~ Ilf - Pn(f)qllq + C5(n) Et(q) . (13)

Proof Set f*(x) = f(x) - Pn(f, x)q; J(x) = f(x) - f(O). Since for any
polynomial gn' II gnlie ~ (2(q + I ))l/qn2/q II gnIl q (see [10, p. 2511), we have

wl'"l!)q(6) == WI'ntTl,(6) ~ 2n 2 611 Pn(])q lie ~ 2n 2 6(2(q + I ))IN n2;q II Pn(])q Ilq
~8n46I1Pn(])qllq~ I6n4611Jllq

~ I6n 4611Jlle ~ I6n 46wJ 1) ~ 32n4wJ6).

(In the last inequality we used the fact that for any 0 < 6 1 ~ 62 , 2W(6 1 )16 1 >
w(6 2 )/62 • See 110, p. 1111.) Thus wf'(6) ~ C6(n)wJ6), where we can put
C6(n) = 32n4+ 1. Further, it is evident that f* has a zero in [0,1]. Thus
applying to f* Lemma 1 we get

where a(n) = I/C6(n). This and (7) imply (13). Q.E.D.

Now we are able to prove Theorem 1. By the strong unicity theorem [9 j,

where gn is an arbitrary algebraic polynomial 'of order at most n. Setting in
this inequality gn = Pn(f)q and using (13) we obtain the conclusion of
Theorem I.

PROOF OF THEOREM 2

Let (I) E W be an arbitrary modulus of continuity. Without loss of
generality we may asssume that w is concave and lim b .+ o w(6)16 > 1.
(Indeed, by a theorem proved in 17 J there exists a concave modulus of
continuity cu such that wl2 ~ W ~ wand multiplying w by a constant if
necessary we can achieve that lim h .+ O w(6)/6 > I, where w ~ w.) Then w(6)
is strictly increasing when 0 < 6";: 60 and w(6)/6 is decreasing. Therefore the
equation

( (4)

has a unique solution ho= ho(q) if q >q2(W).
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Assume that n = 2m. (The case when n = 2m + I can be settled similarly.)
Set 1/(4m + 4) = b and define f on la. 4b I by

lex) = web) - web ~- x).

= web) - w(x- b).

.=:o-2w(b) x/b + 4w(b).

=--w(b).

= 2w(b )x/b - 8w(b),

xE la. bl;

xE Ib.2bl;

x E 12b. 5b/21;

xE \5b/2. 7b/21;

xE 17b/2.4b\.

(15 )

Extend f(x) to la. II as a l/(m + I I-periodic function. Then evidently
wf - wand P,,(f)c == a. Set Gq = I! p,,(f)ql!c. F,,(x) =If - p,,(f)q!" I.

sign(f- p,,(f)q)' By Theorem I Gq --+ + a as q --+ + 00. hence Gq < w(b) if
q ~ qR(n. w). Further by the characterization theorem for best
L q-approximations (see II a. p. 75]) for any q > I

r
l

Fq(x) dx = a.
.\)

I.e..
I Fq(x) dx = F,,(x) dx.
(.rO 'f 0

Let us estimate these integrals.

J Fq(x)dx~J If-p,,(f)q!q Idx
f;> 0 f) 0

(16 )

Let ho= ho(q) be the unique solution of (\4). Then using concavity of w(6)
we have

h

So (f + Gq)q I dx

~r-h°(f+Gq)q-ldX+r (f+Gq)q-1dx
o h- ho

fb-hO (W(b)-W(ho) )'1 Idx
~ 0 b - ho x + Gq

+ fh \w(h o) x + w(b) _ bw(ho) + Gqi 'I - 1 dx
b-hn I ho ho \

~ b - ho (w(b) - w(ho) + Gq)q +~ (w(b) + Gq)q
'" web) ~ w(ho) q w(ho) q
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~ C7(W) j(w(b) - w(ho) + aq)q + (e~w(ho)(w(b) +aq»qf
q

~ C7~W» l(W(b) +aq - w(ho))q + (w(b) + aq - w;) W(hoW~

2C 7(w) q
~ (w(b)+aq-C8(n,w)w(ho»)'

q

where C8(n,w)=minjl,w(b)/2} and ho(q) is small enough (q)qj(n,w».
This and (17) imply

(18)

Now we shall give a lower estimation for -Jf 0 Fq(x) dx.

-I Fq(x) dx
• 1< 0

)L (-f-aq)q~'dx-J < < (-f+aq)q 'dx
Is, - aq a4~f'- 0

Combining this inequality with (16) and (18) we obtain

(w(b) + aq -- C8(n, w) w(hoW

) C,o(n, w) q(w(b) - aq)q- I ) C j In, w) q(w(b) - aq)q,

Thus

w(b) + aq - Cs(n, w) w(ho») (w(b) - aq)(CII(n, w)q)l/q

) (w(b)-aq) (I + InCII~n,w)q) =w(b)-aq

(b)
In C1,(n, w)q In CII(n, w)q+ w - aq ,

q q



146

l.e.,
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(19 )

Let us consider two cases.

Case I. There exists a sequence of positive numbers l6k ,l_ .. + 0 such that
w(6 k ) >/l:.

Let E* be the unique solution of the equation

1 TE:* = w(e- q
/ ).

Equivalence of wf and w implies that Cdn,w)E*(q)~EI(q)~

C14(n, w) E*(q), where E 1(q) is the unique solution of (I). Set 1/E* = w(h I I.
If q is big enough then hi = hl(q) satisfies the relation

(20)

and hi> ho' We can choose a sequence qk --> + 00 satisfying hO(qk) = 15 k ,

Thus by (14) and (20)

qkw(ho(qk))

= In W(hO(qk)) = In w(6k ) >~ In ~
ho(qk) 15 k 2 15 k

I 1 I I I
= 2 1n hO(qk) >2 1n h,(qk) = 2 qkw(h 1(qd)

I.e ..

Then by (19)

hence (3) is verified in this case.
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Case 2. Let us consider the opposite case. Then w(6) ~ IJ (0 < 6 ~ 6 1),

But this implies that I/E 1(q) ~ C I7(n, w) In q/q. Thus using (19) we have

(21 )

which verifies (3) in Case 2.
The proof of Theorem 2 is completed.

PROOF OF THEOREM 3

Let IE C[O, 1] and wJJ) ~ Ja (0 < a ~ 1;°< J ~ 1). Then by Lemma 2

Cs(n) In q
III - p,,(f)qllc ~ III - pAf)qllq + -a-q

~ III - p,,(f)cllc + Cs(n) In q
a q

Further, we shall need the following result: for any °< c ~ I and °< a ~ I

sup sup II p,,(f)c - g" lie ~ C 19(a, n)ca/(n+a), (22)
/"",,8)<:;8 0 ~nEnn

If- gnd,< Ilf- Pn(j)cI;c + ,

where II" is the set of algebraic polynomials of order at most nand C I9 (a, n)
depends only on nand a. Equation (22) was essentially proved in 181
because it easily follows from Lemmas 2, 3 and S of [8]. We shall outline
the proof. By Lemmas 2 and 3 of [8] ifIE C[O, I] satisfies w)J) ~ Ja and°~ Xb'" < x\") ... < x~~ 1 ~ I are its points of Tchebycheff deviation (that is,
(f - P,,(f)e)(xj")) = y(_I)i III - P,,(f)e lie' y = ± 1; i = 0, I,... , n + I), then
x;f:',-,<"»)C2o(n,a)ll/-p,,(f)ell~a,i=O,I,... ,n. By LemmaS of 18] if
g"EII" satisfies relations Y(-I)i+lg,,(X;)~.u (y=±I; .u>0;
i=O,L..,n+I), where O~xo<,,,<x"+I~l and Xi,I-Xi)A>O
(i=O,I,... ,n), then Ilg"lle~C21(n).u/A". Take now arbitrary g"EII"
satisfying III- g"lle ~ III - P,,(f\lIe + G. Then it is easy to see that
y(-l)i+'(g,,-p,,(f)e)(x)"»)~c (i=O,I,... ,n+l) hence by previous
remarks
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If ilf - Pn(f)cllc > t:ll/(n+ol then this implies that il Pn(f)c - gnllc ~
C 22 (n, a)t:°/(n+ol. If, on the contrary, Ilf- Pn(f)cllc ~ t:0/tn+ll), then

Ii pn(f)c - gnllc ~ Ilf - Pn(f)cllc + 11/- gnllc

~ 2 ilf - Pn(f)cllc + f; ~ 2e o
/
in

+ "' + c ~ 3e'l'ln i (II.

Thus the proof of (22) is completed.
Using (22) and (21) we immediately obtain (5). Q.E.D.

Remark. A detailed proof of (22) in the periodic case can be found in

1111·
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