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INTRODUCTION

One of the central questions of Tchebycheff approximation is computing
the polynomial of best approximation. The underlying idea of the algorithms
of computation is usually approximation of Tchebycheff norm by other
norms.

Consider for example the Pdlya algorithm. Let f € C[0, 1], let p, (/). be
the algebraic polynomial of degree n of best Tchebycheff approximation to f;
and p,(f), (g>1) the algebraic polynomial of degree n of best L,
approximation to f. Then as was shown by Polya [1] p,(f), converges
uniformly to p,(f)c as g —» + oo. The analogue of this theorem for the de la
Vallée—Poussin (or discrete) algorithm was proved by Motzkin and Walsh
|2, 3]. Moreover Cheney [4] proved that

1 P2(N)e = PaNilic < Cln. Slof] Y,

where p,(/)y is the best Tchebycheff approximation to fon Y < [0, 1], wA?d)
is the modulus of continuity of f and |Y|=sup,(.,inf,cy |x — »|. Some
theorems on uniform convergence of de la Vallée~Poussin algorithm for
classes of continuous functions were proved in |5].

In the present paper we shall investigate the rate of convergence of Polya
algorithm. As it was shown by Peetre [6], if f € C[O, 1] is continuously
differentiable then for g > ¢,

1240 = Pl < Cn )25,
Our aim is to prove a theorem on convergence of Polya algorithm for
arbitrary /€ C|0, 1|. Moreover we shall verify the sharpness of our
estimations. At last we give a theorem on uniform convergence of Polya
algorithm.
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In what follows C,(---) and g,(---) denote positive constants depending
only on quantities specified in the brackets; while C; and ¢, denote positive
absolute constants.

MAIN THEOREMS

Let f € C|0, 1]. We shall use the following notation

fle= max i 1A= ([ 10rds) @

0

wdd) = Sup | () = Sl
fxyp—x21<8

p.(/)c and p,(f), are algebraic polynomials of order at most n of best
approximation in C and L, norm respectively (n & 7 ). Further define
E, = E(gq) as the unique solution of the equation

1 , .
— =wde ") (E,>05g2 1) (1
£,
It can be easily verified that E,(g) monotonously tends to infinity as
g—+ o and g/E(q) > Clngq for g > g,.

THEOREM 1. Let f € C|0,1]|. Then foranv g > 1 andn& 7 .,

Coln, f)
E\(q) ‘

Let us consider some concrete cases. If w{d)<d* (0 <a<1; 0<I< 1)
then E\(g) > ag/ln g (g > e°). If w{6) <exp[—aIn®(1/6)| (0 <b < 1, a>0),
then E (q) > a"’q/in""q (g > e®). For w/(6)< 1/In“(1/8) (a > 0) we have
Efg)2q¥ " (g=1).

It turned out that estimation (2) is in general the best possible. We shall
need some additional definitions. Let W be the set of all moduli of continuity
of continuous functions. w,,w, € W are said to be equivalent, written
w,~w, iff C,w,(0)<w,(d)<Cyw(d) (0 <o)

1P = Pul )yl € (2)

THEOREM 2. Let n€ Z .. Then for any w € W there exists a function
[ € C|0, 1] such that w,~ w and

}Inj El(q) ”pn(f)( - pn(f)q”( >0, (3)

where E | (q) is the unique solution of (1).
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By this theorem estimation (2) is sharp in general for functions with
arbitrary moduli of continuity. From Theorems 1 and 2 we obtain following

CorOLLARY. Let f€C[0, 1], wdd)<d* (O<agl: 0<ogl),
ne€ . Then for any q > ¢"

|
HmU%~mU%M<kaﬂ%; (4)

and for any 0 <a <1 this order of convergence is in general the best
possible.

Finally, we give a theorem on the uniform convergence of Pdlya’s
algorithm for Lip a.

THEOREM 3. For any n€ Z _, [ € C[0, 1| with w{d)<d* (0<d<1;
O<ag lYand g2 q,(n a)

HmUk-mumh<amaW%% . 5)

where constants q,(n, «) and C,(n, a) depend only on n and a.

PrRoOOF OF THEOREM |

Let £, = E,(gq) be the unique solution of the equation

1 “aky
E a

o

hence E,(q) defined by (1) equals to E(q) defined above. Then evidently for
any g > |

min(1, 1/a) E (q) < E,(g) < max(1, 1/a) E (q), (7

i.e., the solutions of (1) for equivalent moduli are equivalent.

LEmmAa 1. For any f € C[0, 1] such that f(s)=0 for some s € [0, 1]
and any g > 1

2 max(1, wd1))

Iflle Il + =55

(8)

Proof. We shall consider two cases.
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Case l. | flle <wde ). Then if E, < 1. || f]lc <wde )< wd1)/E,. On
the other hand, if £, > 1, | fll. < wde ) < wde ¥ 1) = I/E,. Hence, in this
case,

max (1, wd1))

7<=

(9)

Case2. | flc>wde ). Set E*(g)=E,q). where a=|fj. Then
E* > 1. Indeed, if E* < 1, then by (6)

e )7 wle )

> 1.

By this contradiction we obtain, that E* > 1. Further, without loss of
generality we may assume that || f|.= f(s,) and 5, > 5. Then obviously
S 2| fll¢ — wds, —x) for x € [s.s5,]. hence setting 1= min{x:w/x)=
If]lct we obtain

g

702 [ st = oo, o s

(10)

= [ 1 oo as

Set now = max{x : wAx) = /|/E*}. Since E* > 1. we have 0 < 1 < . This
and (10) imply

11>

1/q ' i
> (It~ ey ey

7

| Ul = o)) d
0

By definition of ¢ and E*,

t>e vt (12)

Further, (7) implies that
E

>
max(1, 1/]/c)

Using this, (12) and (11) we arrive at

*

”””W“@‘éﬂew>wm@-ﬁy

21/ 2| /)l max(1, 1/) S|l
> 1l - 2 5y, - 2 e et /1)
> 117l - 222 0A),

This inequality together with (9) completes the proof of the lemma.
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LEmMMA 2. For any £ € C|0, 1] and g > 1,

max(1, wA1))
E\(q)

Proof. Set f*(x)= f(x)— p,(/fi X); S(x)= f(x)— f(0). Since for any
polynomial g,, || g,/lc < (2(g + 1)"9n¥?| g,l|, (see [10, p. 251]), we have
Wy (0) =@, 3(6) <2178 p,(N)ylle < 2n73Q2(g + 1N n** 11 p,, (), 1,
<810 po(f),lly < 16n° 811,
< 1616l < 16n*dwd1) < 32n*w (6).

1S = Pl alle NS = PalSyllg + Cslm) (13)

(In the last inequality we used the fact that for any 0 < 4, < 8,, 2w(,)/d, >
w(3,)/d,. See [10, p. 111].) Thus w.(6) < Cs(n)wAJ), where we can put
Cy(n)=32n* + 1. Further, it is evident that /* has a zero in [0, 1]. Thus
applying to /* Lemma 1 we get

2C(n) max(1, wA1))
E w(q) '

where a(n) = 1/Cq(n). This and (7) imply (13). Q.E.D.

I/ * e <L/l +

Now we are able to prove Theorem 1. By the strong unicity theorem [9],

124N = &alle <VlSNS = &alle =1/ = 2a(Nelc s

where g, is an arbitrary algebraic polynomial of order at most #. Setting in

this inequality g,= p,(f), and using (13) we obtain the conclusion of
Theorem 1.

PROOF OF THEOREM 2

Let @« € W be an arbitrary modulus of continuity. Without Joss of
generality we may asssume that w is concave and lim, ., w(d)/d > I
{Indeed, by a theorem proved in {7] there exists a concave modulus of
continuity @ such that @/2 € w <& and multiplying @ by a constant if
necessary we can achieve that lim,__, @(6)/d > 1, where @ ~ w.) Then w(d)
is strictly increasing when 0 < § < é, and w(d)/d is decreasing. Therefore the
equation

w(hy) _
hy

eqw(hn) (14)
has a unique solution A, = Ay(q) if g > g.(w).

630 302 8
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Assume that n = 2m. (The case when n = 2m + | can be settled similarly.)
Set 1/(4m + 4)=b and define fon [0, 4b]| by

F(x) = w(b)— olb — x). x€|0.b]:
= w(b) — wlx - b), x € 1b.2b]:
= -2w(b) x/b + dw(b). X € [2b,5b/2]:
~ —w(b). X € [5b/2,7b)2):
= 2w(b)x/b — 8w(b), X € |7b/2,4b)|.

Extend f(x) to [0,1] as a 1/(m+ 1)-periodic function. Then evidently
w~w and p,(f) =0 Set a,=11p(yllcr Fx)=1 — p(f)l" "
sign(f — p,(/),). By Theorem | a,— + 0 as g~ + co. hence a, < w(b) if
g 2 qg{n, w). Further by the characterization theorem for best
L ~approximations (see |10. p. 75]) for any ¢ > 1

(qu(x)dx:O. (15)
7

)

| Fux)dx= | Fyx)dx, (16)
t=0 )
Let us estimate these integrals.

[ Emdx<] i p),l

f20 f20
<J (f+a)“"dx<—LJb(f+a)q"dx. (17)
h >0 ¢ \2b 0 !

Let h, = hy(g) be the unique solution of (14). Then using concavity of w(d)
we have

[ +ayax
0

h—hy b ]
q (f +a,) "dx+ (f +a,)" 'dx
0 ”*"0
b—ho {w(b) — wihy) )"" Ydx
< — MY
f ( =) st g,

+J'b g—w—(ﬁo—)—x+w(b)—2—c—uh(—’%)—+aq§w dx

b—hy 0 0
o b—h (@) wlhy)t+a) hy (@) +a,)
= w(b) — w(hy) q w(hy) q
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< C7,(;w) {w(b) — wlhy) + a,)? + (e~ ™ (w(b) + a )}
< C7(qw)) (@(0) + a, ~ wh)F + @6) + 2y~ 2T wlhy)y
o)

w(b) + a, — Cy(n, w)w(hy))’,

where Cy(n, w)=min{l, w(b)/2} and h,(q) is small enough (g > gq,(n, w)).
This and (17) imply

Cy(

’. F,(x)dx < _;;,_wl (w(b) + a, — Cy(n, w)w(h,)). (18)

“F20

Now we shall give a lower estimation for ~J',~,,(, F.(x)dx,

~|  Fx)dx
S0
=~ f F(x)dx— | F,(x)dx
f< - ay Ca,<f<0
>j ) tdx — (~f +a,) 'dx
fxfaq Teagsfa0
1 (72 ) .
> | (@®)—a) dx— (2a,)
5b/2

- Ti— (w(b) - aq)l]7l - (2aq)q7 ! > _;' ((l)(b) - aq)Q7l (q 2 q4(yn- w))

Combining this inequality with (16) and (18) we obtain
(w(b) + a, — Cy(n, w) w(h,))?
Cioln. w) g(w(b) — a,)* ' > Cyy(n, w) g(w(b) — a,)*.
Thus

w(b) + a, — Cy(n, w) w(hy) > (w(b) = a,((Cy,y(n, w)g)"*

(1 N In Cllfln, w)q)

2> (w(b) —a,) =w(b)—a,

InCy(n,w)g . InC,(n, w)

+ w(b) a p
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; In
a,> Cpyn. o) (a)(h(,)+~q—q) (q > q5(n, w)). (19)

Let us consider two cases.

Case 1. There exists a sequence of positive numbers {J, | — + 0 such that
(8,) >\/0,.
Let E* be the unique solution of the equation
I\

!

Equivalence of w, and « implies that C;(n, w)E*(q)<E\(g) <
C,,(n. w) E*(q), where E (g) is the unique solution of (1). Set 1/E* = w(h,).
If ¢ is big enough then h, = h,(g) satisfies the relation

1
In—=gw(h,) (20)
h,
and h, > h,. We can choose a sequence g, — + oo satisfying hy(g,) = 9.
Thus by (14) and (20)

g ho(qy))
U)(ho(Qk)):l () «l—l I

e s M,
:% In mlq—k) > %lnh_,(llﬁ =%qkw(h1(qk)) (k = ko),
Le.,
hola) > 5 o) = gpris > Et k)
Then by (19)
1P = ol e > 29D g

E (q))

hence (3) is verified in this case.
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Case 2. Let us consider the opposite case. Then w(d) < /d (0 < 6 < 6)).
But this implies that 1/E,(g) < C,,(n, @) In g/q. Thus using (19) we have

Ing Cy(n, w)

! s = C, I = e\l ’
lpn(f)( pn(f)q“( aq> lh(n ) q El(q) (q>q (n C{)))

which verifies (3) in Case 2
The proof of Theorem 2 is completed.

PROOF OF THEOREM 3

Let f€ C[0, 1] and w/(J) < 6% (0 <a << 1;0<d<1). Then by Lemma 2

Cs(n) lnq
q
C (n) Ing

1/ = 2ulelle <UL/ = PulNalla +

<If = pulfelle + (g=e®). (21)

Further, we shall need the following result: for any 0 <e<1and 0 <a <1

sup sup | P — gn”(' < Cyyla, n)ga/(’Hmv (22)

Siwp sy da g,ell,
I~ &mic <= PaNclic + ¢

where 71, is the set of algebraic polynomials of order at most n and C,4(a, n)
depends only on n and a. Equation (22) was essentially proved in |8]
because it easily follows from Lemmas 2, 3 and 5 of [8]. We shall outline
the proof. By Lemmas 2 and 3 of (8] if /' € C[0, 1] satisfies w{d) < 0° and
0<xi" <xi™ ... <x" <1 are its points of Tchebycheff deviation (that is,
(/= PD)IE™) = 9 (=1) 1 = p(L)clles 7=+ 13 i=0, Loy n 4 1), then
x" = x> Chony )| f — p(S)elld®s i=0,1,..,n By Lemma5 of (8] if
g, €M, satisfies relations J(—1)*"'g.(x)<u  GF=+1; u>0;
i=0,1..,n+1), where 0<xo< -~ <x,,, <1 and x; ,—x;24>0
(i=0,1,...n) then g, <Cy(nu/A". Take now arbitrary g, €1,
satisfying |/ — g.lle <|Ilf — p,(/)ellc + €. Then it is easy to see that
=" g, — p())xy<e (i=0,1,..,n+1) hence by previous
remarks

Cyy(n, a)

Hf - pn(f)(‘Hg/a .

12, — &ullc <
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I S = pu(f)clc>e¥"*® then this implies that |p,(f)c — &l <
Cyy(n, a)e® "+ If, on the contrary, ||/ — p,(f)clle <&+, then

H pn(f)( - gn“(‘ < Hff pn(.f)('“(' + H.f - gn“(‘
2L = Pl + 6 2680 g 3pinen

Thus the proof of (22) is completed.
Using (22) and (21) we immediately obtain (5). Q.E.D.

Remark. A detailed proof of (22) in the periodic case can be found in
[11].
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